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Abstract
The application of supersymmetric quantum mechanics to the inverse scattering
problem is reviewed. The main difference with standard treatments of the
inverse problem lies in the simple and natural extension to potentials with
singularities at the origin and with a Coulomb behaviour at infinity. The most
general form of potentials which are phase-equivalent to a given potential
is discussed. The use of singular potentials allows adding or removing states
from the bound spectrum without contradicting the Levinson theorem. Physical
applications of phase-equivalent potentials in nuclear reactions and in three-
body systems are described. Derivation of a potential from the phase shift
at fixed orbital momentum can also be performed with the supersymmetric
inversion by using a Bargmann-type approximation of the scattering matrix or
phase shift. A unique singular potential without bound states can be obtained
from any phase shift. A limited number of bound states depending on the
singularity can then be added. This inversion procedure is illustrated with
nucleon–nucleon scattering.

PACS numbers: 03.65.Nk, 02.30.Zz, 11.30.Pb, 21.45.+v

1. Introduction

Inverse problems appear in various fields of physics [1]. They consist in deriving the input of
some theory or model from experimental or simulated data. In particular, the inverse scattering
problem in nonrelativistic quantum mechanics consists in deducing a potential from scattering
information [1–3].

Ideally the potential should be determined from real experimental data, i.e. from measured
cross sections. This is realized mostly in a very simplified version of the inversion procedure:
some potential form factor is selected for physical reasons and its parameters are fitted to the
data. This naive inversion technique can be improved to a fit of a potential expanded on some
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selected basis. However, these techniques suffer from a lack of unicity and several families
of potentials can usually be obtained. More elaborate numerical techniques based on cross
sections or other data at different energies are available [4].

The theory of inverse scattering requires some intermediate step, i.e. a phase-shift analysis.
The experimental cross sections are first expressed as a function of a set of phase shifts or of
scattering matrices if more than one channel is open. This analysis is difficult and requires
accurate cross sections over a broad energy range. The existence of several energies allows in
principle elimination of ambiguities in phase-shift determinations. Such analyses have only
been performed for a few systems of light nuclei, the most elaborate ones being without any
doubt the analyses of the proton–proton and neutron–proton scatterings.

In the following, we assume that the collision is described in nonrelativistic quantum
mechanics with an unknown central potential. We also assume that the phase shifts related to
this potential are available. Then the inverse problem can be separated into two main types:
inverse problem at fixed orbital momentum and inverse problem at fixed energy. Although
the second problem is more frequent in practice because of the difficulty of obtaining data
at many energies, the first problem is better posed in mathematical terms. In the rest of this
review, we mainly address the inverse problem at fixed orbital momentum. This means that
we assume that, for a partial wave at given orbital momentum, the phase shift is available
over the full energy domain from zero to infinity. This assumption is of course impossible to
satisfy since new channels always open when the energy increases and Schrödinger quantum
mechanics stop being valid at some energy. Nevertheless, with this assumption, inverse
scattering becomes a well-posed mathematical problem.

The inverse problem at fixed orbital momentum does not possess a unique solution as
was first believed. The phase shifts do not contain information about bound states except
maybe about their number through the Levinson theorem [1, 2]. This was first realized by
Bargmann [5, 6]. Even the knowledge of the phase shift and of the bound-state energies does
not yield a unique solution. With each bound state is associated a free parameter which is
usually named ‘normalization constant’ [1, 2]. Therefore phase-equivalent potentials exist,
i.e. different potentials with exactly the same phase shift for a given partial wave [6, 7]. Only
potentials without any bound state are uniquely defined from the phase shift.

A rigorous theory of the inverse problem at fixed orbital momentum has been available
for some time. It is based on the Gel’fand-Levitan or Marchenko equations [1–3, 8, 9] (see
the appendix). In the present review we focus on an approach of the inverse problem based
on supersymmetric quantum mechanics [10–14]. This more recent approach has two main
advantages. Although it does not improve the traditional approach (it is in fact less general), it
is much simpler to deal with. Moreover, the supersymmetric approach opened novel physical
views on the problem by naturally introducing the use of singular potentials [15, 16]. In the
following, we successively consider two aspects of inverse scattering: the construction of
phase-equivalent potentials and inversion at fixed orbital momentum. We also briefly address
the problem at fixed energy where supersymmetric quantum mechanics also offers interesting
perspectives.

Supersymmetric quantum mechanics provide a simple general solution to the problem
of phase equivalence. This was first noticed by Sukumar who derived phase-equivalent
potentials in cases where the spectrum remains unchanged [11]. More generally, phase-
equivalent potentials with modified spectra can be exactly derived with pairs of supersymmetric
transformations [15–20]. Bound states can be added or eliminated from the bound spectrum
of a potential without affecting its phase shifts. Note that such modifications do not affect
the value of the orbital momentum as was sometimes stated [11] because the angular part of
wavefunctions is not affected by such transformations. Another incorrect statement in initial
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formulations [15–17] is that this technique can only be applied to transformations involving
nodeless wavefunctions. This natural restriction for the properties of single transformations
[10, 11] is in fact not necessary for pairs of transformations as was proved in [18]. This allowed
us to derive the most general form of phase-equivalent potentials [20]. Equivalent potentials
providing arbitrary modifications of the bound spectrum can be constructed provided that the
number of added bound states does not exceed some limit fixed by the properties of the original
potential.

This helped clarifying the long-standing problem of the deep or shallow nature of the
nucleus–nucleus potentials. In shallow potentials all bound states have a physical meaning.
Microscopic models, however, suggest that realistic potentials should be deep. Deep potentials
contain unphysical ‘forbidden’ states in order to simulate the Pauli principle between the
interacting particles. Elastic scattering data do provide both deep and shallow potentials.
Supersymmetric transformations of deep potentials into shallow phase-equivalent ones show
that this is a false problem for elastic scattering [15]. This does not mean that deep and shallow
potentials have the same physical interest. Off-shell properties of phase-equivalent potentials
are different and this may have physical consequences in reactions and in many-body systems.

Inverse scattering for a given partial wave can be performed in a simple approximate way
with supersymmetric transformations [21]. This approach is equivalent to a particular case
of standard inverse-scattering theory, based on a Bargmann-type approximation [5, 6] of the
scattering matrix or phase shifts. The natural use of singular potentials in supersymmetric
quantum mechanics suggests dividing the problem into two steps. Indeed a unique singular
potential without bound state can be derived from any set of phase shifts. Bound states can
subsequently be added in the most appropriate way. In particular, bound-state additions can
be used to derive potentials with the weakest possible dependence on the orbital momentum
[22].

The principle of supersymmetric transformations is summarized in section 2. Phase
equivalence is analysed in section 3. Physical applications are described in section 4.
Different facets of the inversion problem are discussed in section 5 and illustrated in section 6.
Concluding remarks and an outlook are presented in section 7.

2. Types of supersymmetric transformations

This section follows Sukumar’s paper [11]. The radial Schrödinger equation of a system of
two particles is written as

H0ϕ0 = Eϕ0 (2.1)

with the Hamiltonian

H0 = − d2

dr2
+ V0(r). (2.2)

We choose h̄ = 2µ = e = 1 where µ is the reduced mass of the particles. Here and in the
following, the subscript refers to some Hamiltonian obtained after a number of transformations.
Subscript 0 refers to the initial Hamiltonian.

The Coulomb and centrifugal terms are included in potential V0,

V0(r) →
r→∞Z1Z2r

−1 + l(l + 1)r−2 + O(r−3) (2.3)

where Z1 and Z2 are the charges of the colliding particles and l is the orbital momentum of
their relative motion. Dependences on l will in general be implied. The potential V0 is allowed
to be singular at the origin in the following way,

V0(r) →
r→0

n0(n0 + 1)r−2 + O(r−1) (2.4)
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where n0 is a non-negative integer. The singularity parameter n0 may thus differ from the
orbital momentum l which controls the asymptotic expression (2.3).

Let us denote as ϕ0(r) a real solution of the Schrödinger differential equation at some
arbitrary energy E. This solution may represent a physical bound state when E belongs to the
bound spectrum of H0 (in that case, it is assumed to be normalized to unity) or a scattering
wavefunction when E is positive. It may also represent any non-physical solution of (2.1).

The possible asymptotic behaviours of a solution at energy E < 0 read

ϕ0(r) →
r→∞ exp[−√−Er − (Z1Z2/2

√−E) ln 2
√−Er] (2.5)

or

ϕ0(r) →
r→∞ exp[

√−Er + (Z1Z2/2
√−E) ln 2

√−Er]. (2.6)

For simplicity, in most of the following, we do not display the logarithmic corrections due to
the Coulomb term in (2.3). However, all the presented properties do apply to potentials with
a Coulomb asymptotic form. At the origin, the singularity (2.4) of the potential allows the
behaviours

ϕ0(r) →
r→0

rn0+1 (2.7)

or

ϕ0(r) →
r→0

r−n0 . (2.8)

Function ϕ0 may represent non-physical solutions which do not vanish at the origin. Until now,
we do not eliminate any possible mathematical solution. Nevertheless physical wavefunctions
(denoted as ψ0) are restricted by the fact that they must be bounded. Solutions with the
behaviour (2.8) and n0 � 0 are called singular because the three-dimensional wavefunction
r−1ϕ0(r)Y

m
l (θ, ϕ) is not bounded. Physical wavefunctions of H0 must behave as rn0+1 near

the origin. For a negative energy E they must also satisfy (2.5). At a positive energy E, they
behave as

ψ0(r) →
r→∞ sin

[
kr − 1

2 lπ − (Z1Z2/2k) ln 2kr + δ
]

(2.9)

where k = √
E is the wavenumber and δ is the phase shift.

The validity of several previous expressions is restricted by a condition on the potential.
Phase shifts are obtained from an analysis of cross sections. This analysis is performed under
the assumption that the potential tends for large r values towards the Coulomb potential, the
difference between them decreasing faster than r−2. The r−2 term in (2.3) totally originates
from the centrifugal kinetic energy. The asymptotic expression (2.3) of each effective potential
V0 is therefore linked with the orbital momentum l of the corresponding partial wave, i.e. with
its angular dependence. Under this assumption, the corresponding phase shift is defined by
the asymptotic expression (2.9). Before defining transformations of (2.1), let us emphasize
that they apply to this radial equation only. They do not affect the angular symmetry of a
wavefunction. In other words, the orbital momentum l cannot vary in such transformations.

We consider some arbitrary energy E < 0, called the factorization energy, and the
corresponding solution ϕ0 of the Schrödinger equation (2.1). The initial Hamiltonian H0 can
be factorized [10] as

H0 = A+
0A

−
0 + E (2.10)

with the mutually adjoint first-order differential operators

A±
0 = ± d

dr
+

d

dr
ln ϕ0. (2.11)
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The derivative of the logarithm of ϕ0 is a convenient notation for ϕ′
0/ϕ0. Therefore, one does

not need to worry about the sign or normalization of ϕ0. The solution ϕ0 at energy E can
change sign and be physical or non-physical.

The supersymmetric partner of H0 reads

H1 = A−
0 A+

0 + E (2.12)

= − d2

dr2
+ V1(r). (2.13)

The corresponding potential is given by

V1 = V0 − 2
d2

dr2
ln ϕ0. (2.14)

The Hamiltonian H1 possesses the same bound spectrum as H0, with the possible exception
of E , when E is the energy of a bound state. In this particular case, a state with energy
E is suppressed when ϕ0 is a physical (bounded) solution or can be added; otherwise, the
bound spectrum remains unchanged [10]. These properties can easily be observed on the
wavefunctions as shown below.

Potential V1 is singular at the zeros of ϕ0, if ϕ0 has nodes. In order to have a non-
singular potential at finite distances, ϕ0 must be nodeless, i.e. E must be lower than or equal
to the ground-state energy of H0. This ‘no-node’ condition imposed to supersymmetric
transformations [10, 15–17] is, however, not mandatory when pairs of transformations are
considered (see section 3).

Let us detail the properties of V1 at 0 and ∞. The asymptotic behaviour of potential V1 is

V1(r) →
r→∞Z1Z2r

−1 + [l(l + 1) ± (Z1Z2/
√−E )]r−2 + O(r−3). (2.15)

The centrifugal term is modified unphysically when both particles are charged. The − and
+ signs correspond to (2.5) and (2.6), respectively. At the origin, the singularity is modified
depending on the behaviour of ϕ0,

V1(r) →
r→0

n1(n1 + 1)r−2 (2.16)

with n1 = n0 + 1 if ϕ0 →
r→0

rn0+1 and n1 = n0 − 1 if ϕ0 →
r→0

r−n0 . A solution regular at the origin

increases the singularity parameter while a solution singular at the origin decreases it. Note,
however, that the orbital momentum l remains unchanged since it is fixed by the angular part
of the wavefunctions. When n0 = 0 and ϕ0 does not vanish at the origin as in (2.8), the
supersymmetric transformation does not introduce a singularity in V1, i.e. n1 = 0.

The solutions (physical or non-physical) of H1 are related to those of H0 by

ψ1 = A−
0 ψ0 (2.17)

or

ψ1 = (ϕ0)
−1W(ψ0, ϕ0) (2.18)

where W(ψ0, ϕ0) = ψ0ϕ
′
0 −ψ ′

0ϕ0 is the Wronskian of ψ0 and ϕ0. For E �= E , these equations
transform regular solutions of H0 into regular solutions of H1 and singular solutions of H0

into singular solutions of H1. They give thus access to all the solutions of H1. However, when
n0 = 0 and ϕ0 is singular at the origin, the nature of the solution is not always conserved by
the transformation. Since this case is not useful for the applications presented later, we shall
not consider it in the following.

Using an integral expression of this Wronskian, one obtains up to a constant factor

ψ1 = (ϕ0)
−1

(
β +

∫ r

r0

ϕ0ψ0 dt

)
. (2.19)
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Table 1. Modifications of the bound spectrum, phase shift and singularity parameter for the
different types of transformations (E0 represents a bound-state energy).

Action E limr→0 ϕ0 limr→∞ ϕ0 δ1(k) − δ0(k) n1

Suppression =E0 rn0+1 exp(−√−Er) arctan(k/
√−E) n0 + 1

Addition (n0 > 0) �=E0 r−n0 exp(
√−Er) −arctan(k/

√−E) n0 − 1
None �=E0 rn0+1 exp(

√−Er) −arctan(k/
√−E) n0 + 1

None (n0 > 0) �=E0 r−n0 exp(−√−Er) arctan(k/
√−E) n0 − 1

The real parameters β and r0 � 0 are somewhat redundant but are both useful to allow the
different types of behaviours of ϕ0 and ψ0 in a general solution. This expression can also be
verified directly. For E = E , (2.18) only leads to one solution of H1, i.e. (ϕ0)

−1. At this
energy, it can be verified that (2.19) with ψ0 = ϕ0 and an arbitrary β still provides the general
solution of H1.

Equation (2.17) leads to the asymptotic behaviour of wavefunctions with E > 0,

ψ1(r) →
r→∞ sin

(
kr − 1

2 lπ + δ ± arctan(k/
√−E)

)
. (2.20)

The positive sign occurs if ϕ0(r) →
r→∞ exp(−√−Er) and the negative sign if

ϕ0(r) →
r→∞ exp(+

√−Er). Equation (2.20) shows that the phase shifts are modified in a simple

way. This is not true in the excluded n0 = 0 cases where positive-energy wavefunctions are
transformed into non-physical states.

When E is the energy of a bound state of H0 and ϕ0 is its wavefunction, the transformation
suppresses this state from the bound spectrum. Indeed, (2.19) with ψ0 = ϕ0, r0 = ∞ and
β = 0 provides a solution of H1 vanishing at infinity but singular at the origin. In contrast,
when E does not belong to the bound spectrum of H0, three cases may occur. When ϕ0 is
regular at the origin and singular at infinity (respectively singular at the origin and regular
at infinity), (ϕ0)

−1 is a solution of H1 which is singular at the origin and regular at infinity
(respectively regular at the origin if n0 > 0 and singular at infinity). Hence, E does not belong
to the spectrum of H1 and these two transformations do not modify the bound spectrum. When
ϕ0 is singular both at the origin and infinity, ψ1 = (ϕ0)

−1 is regular both at the origin and
infinity. It is thus a bound-state wavefunction and this transformation adds a state to the bound
spectrum. However, this is not true in the excluded n0 = 0 case.

In summary, four types of supersymmetric transformations are obtained depending on the
choice of factorization energy E and on the choice of solution ϕ0. The asymptotic behaviour
of ϕ0 controls the phase-shift modification. The regularity or singularity of ϕ0 at the origin
controls the modification of singularity of the potential. It also controls the change of Jost
function (see section 5.1). Transformations leave the bound spectrum unmodified except for
a bound state at energy E which may be suppressed if it exists or added otherwise. Important
properties of the transformations are summarized in table 1. The excluded n0 = 0 cases lead
to transformations of the phase shift which have no simple application.

3. Derivation of phase-equivalent potentials

3.1. Removing a bound state

Before looking at the most general case, let us consider the construction of a phase-equivalent
potential with the same bound spectrum as H0 except that a bound state at energy E0 is
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removed. To this end we perform two successive transformations. The first one suppresses
the bound state but modifies the phase shift. The second one restores the phase shift while
keeping the bound spectrum unchanged. Both transformations are performed with the same
factorization energy, equal to the bound-state energy.

For the first supersymmetric transformation, we choose a bound-state energy E0 < 0 as
factorization energy E and the physical wavefunction ψ

(0)
0 of this bound state as ϕ0,

H0ψ
(0)
0 = E0ψ

(0)
0 . (3.1)

Note that this state will not necessarily be the ground state in the two-step algorithm, contrary
to what is stated in [15–17]. It follows the behaviours (2.5) and (2.7). According to (2.14),
the transformed potential in Hamiltonian H1 reads

V1 = V0 − 2
d2

dr2
ln ψ

(0)
0 . (3.2)

The singularity parameter n1 has increased by one unit. Solutions are given by (2.19). At
energy E0, the solution regular at the origin reads with r0 = β = 0 as

ϕ
(0)
1 = (

ψ
(0)
0

)−1
∫ r

0

(
ψ

(0)
0

)2
dt. (3.3)

It is now non-physical, since its asymptotic behaviour at infinity is exp(+
√−E0r).

Following [15], let us perform a second supersymmetric transformation with the same
factorization energy to restore the phase shift. To this end, an asymptotically increasing
solution must be employed. Choosing ϕ

(0)
1 leaves the spectrum unchanged. Hamiltonian H1

is factorized as

H1 = A+
1A

−
1 + E0. (3.4)

This Hamiltonian has no bound state at E0 so that now the factorization energy is not any
more a bound-state energy. The first-order operators involve the non-physical solution ϕ

(0)
1 ,

A±
1 = ± d

dr
+

d

dr
ln ϕ

(0)
1 . (3.5)

The supersymmetric partner of H1 is

H2 = A−
1 A+

1 + E0. (3.6)

The corresponding potential reads

V2 = V1 − 2
d2

dr2
ln ϕ

(0)
1 (3.7)

= V0 − 2
d2

dr2
ln

∫ r

0

(
ψ

(0)
0

)2
dt. (3.8)

Hence according to table 1, the phase shift is restored,

δ2(k) = δ0(k). (3.9)

Potential V2 is phase-equivalent to V0. Note that (3.8) provides a direct calculation of V2 from
V0. Moreover the denominator in (3.8) cannot vanish for r > 0, even when ψ

(0)
0 has nodes.

In [23], phase equivalence is discussed with the variable-phase method.
The wavefunctions of H2 are given by

ψ2 = ψ0 − ψ
(0)
0

∫ r

0 ψ
(0)
0 ψ0 dt∫ r

0

(
ψ

(0)
0

)2
dt

. (3.10)
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The removed bound state is not restored by the second transformation because ϕ
(0)
1 is not

singular at the origin. Since ψ
(0)
0 decreases exponentially at large distances, the asymptotic

behaviours of ψ2 and ψ0 are clearly identical. This explains how the phase shifts can be
identical at all energies. Finally the potential singularity at the origin is modified as

V2(r) →
r→0

(n0 + 2)(n0 + 3)r−2. (3.11)

The new singularity parameter is n2 = n0 + 2.
In a strict sense, the previous derivation is valid for the ground state only since the

intermediate potential V1 has singularities at the nodes of ψ
(0)
0 otherwise. However, it has

been shown rigorously in [18] that exactly the same expressions (3.8) to (3.10) are obtained
when ψ

(0)
0 is an excited state. Hence, one can consider that the occurrence of potential

singularities in the intermediate step of a pair of supersymmetric transformations with the
same factorization energy does not affect the final result.

3.2. General phase-equivalent pair of transformations

The different interesting cases (including the case just developed) can be treated with a single
unified notation [20]. Let us consider a solution ϕ

(0)
0 of (2.1) at energy E < 0 with the

asymptotic behaviour

ϕ
(0)
0 (r) →

r→∞ exp(−√−Er). (3.12)

This solution corresponds to a bound state if E is physical or is singular at the origin if E is
non-physical. The initial Hamiltonian is factorized as in (2.10) with A−

0 given by (2.11). The
potential V1 of (2.14) appears in the supersymmetric partner of H0. The solution at energy E
behaving at infinity as exp(+

√−Er) is given, up to a sign, by (2.19) with r0 = ∞ as

ϕ
(0)
1 = (

ϕ
(0)
0

)−1
[
β +

∫ ∞

r

(
ϕ

(0)
0

)2
dt

]
(3.13)

where β is a non-vanishing parameter.
Then H1 is factorized as in (3.4). The operators A+

1 and A−
1 are given by [16, 20]

A±
1 = ± d

dr
+

d

dr
ln

{(
ϕ

(0)
0

)−1
[
β +

∫ ∞

r

(
ϕ

(0)
0

)2
dt

]}
. (3.14)

Since ϕ
(0)
1 increases exponentially, the phase shift is corrected by the second supersymmetric

transformation. The potential in Hamiltonian H2 reads

V2 = V0 − 2
d2

dr2
ln

[
β +

∫ ∞

r

(
ϕ

(0)
0

)2
dt

]
. (3.15)

This potential is phase-equivalent to V0 and has no singularity at finite distances [18], provided
that β satisfies the conditions given below.

Three interesting cases can be considered.

(1) If E and ϕ
(0)
0 are physical with β = −1, the bound state is suppressed (section 3.1).

(2) If E and ϕ
(0)
0 are non-physical with β > 0, a bound state is added at energy E and a

parameter appears in the potential.
(3) If E and ϕ

(0)
0 are physical with β < −1 or > 0, the bound spectrum remains unchanged.

This is the case considered by Sukumar [11].

Other possible pairs of transformations are either trivial or lead to potentials with singularities
at finite distances [16].



Inverse scattering with supersymmetric quantum mechanics 10231

Table 2. Properties of phase-equivalent pairs of transformations.

Action E limr→0 ϕ
(0)
0 limr→∞ ϕ

(0)
0 β n2

Suppression =E0 rn0+1 exp(−√−Er) −1 n0 + 2
Addition (n0 � 2) �=E0 r−n0 exp(−√−Er) >0 n0 − 2
None =E0 rn0+1 exp(−√−Er) < −1 or > 0 n0

The fate of the bound state at energy E differs in the first and third cases according to
the value chosen for β. In the first case, the suppressed bound state remains suppressed after
the second factorization. In the third case, the second factorization reintroduces a bound
state at this energy so that the bound spectrum remains unchanged after the two successive
transformations but a parameter is introduced in the potential. This case is obtained in
section 3.4 by combining the first two [17].

The potential V2 can be calculated in a single step with (3.15). As the denominator
always keeps the same sign, V2 is not restricted to cases where ϕ

(0)
0 is nodeless [18, 19]. The

singularity of the potential is modified according to the case: n2 = n0 + 2 (suppression),
n2 = n0 − 2 (addition) and n2 = n0 (spectrum unchanged). Note that n2 must be positive so
that the addition requires the condition n0 � 2. These properties are summarized in table 2.

The corresponding solution at energy E reads

ϕ2 = ϕ0 − ϕ
(0)
0

[
β +

∫ ∞

r

(
ϕ

(0)
0

)2
dt

]−1 ∫ ∞

r

ϕ
(0)
0 ϕ0 dt (3.16)

(see [20] for the normalization). Let us emphasize that (3.16) is valid at all energies for
physical and non-physical solutions of (3.6), bounded at infinity. The fact that the phase
shifts are not modified is easily seen in (3.16). Indeed, ϕ2 differs from ϕ0 by a term which is
obviously short-ranged.

3.3. Two apparent objections

The results of the previous paragraph may seem to raise two types of objections. The first one
concerns the Levinson theorem. In traditional scattering theory, this theorem [2] states that

δ(0) − δ(∞) = Nπ (3.17)

where N is the number of bound states of the potential for orbital momentum l. How can
one modify the number of bound states without affecting the phase shifts since the difference
between the phase shifts at zero and infinite energies are fixed by this theorem? The answer
to this objection has been partly given by Swan [24]: the Levinson theorem is modified in
the presence of a singularity (2.4) where the singularity parameter n of partial wave l is not
equal to l.

Swan’s generalization is proved for a short-ranged potential. No proof is available for a
Coulomb asymptotic behaviour such as in (2.3). In [25], we conjectured that Swan’s result
remains valid in the presence of a Coulomb asymptotic behaviour and that the generalized
Levinson theorem reads like in [24]

δ(0) − δ(∞) = [
N + 1

2 (n − l)
]
π. (3.18)

Phase equivalence is possible in removals and additions of bound states because N + 1
2n

remains constant in such transformations. The interest of (3.18) for nuclear potentials was
first raised by Michel and Reidemeister [26].
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A second objection concerns the S matrix defined as S = exp(2iδ). Phase-equivalent
potentials do not modify the S matrix. As is well known however, bound states correspond
to poles of the S matrix on the upper imaginary k-axis. The fact that one removes a bound
state seems to imply that the corresponding pole is removed in contradiction with the phase-
equivalence relation obtained from (3.9) [27],

S2(k) = S0(k). (3.19)

This apparent contradiction is resolved as follows. The S matrix of a singular potential with
singularity parameter n is given in terms of its Jost function by

S(k) = (−1)n−l F (−k)

F (k)
. (3.20)

Bound states correspond to zeros of F(k) on the upper half k-axis and hence to poles of
S. The modifications of the Jost function by supersymmetric transformations are given by
equations (5.9) and (5.10) according to the behaviour (2.7) or (2.8) of ϕ

(0)
0 at the origin. For

the removal of a bound state, for example, the Jost function is modified twice as in (5.9)
but with opposite values κ = ±√

E . By combining the modifications induced by the pair of
transformations, one obtains the modification of the Jost function [25]

F2(k) = F0(k)
k2

k2 − E
. (3.21)

Introducing relation (3.21) in (3.20) leads to (3.19). A bound state is removed by suppressing
a zero of F0 but a pole appears in F2 which leads to the same S matrix (see also [28, 29]).

3.4. Most general transformations of a real energy-independent potential

The most general problem concerns the phase-equivalent potential corresponding to an
arbitrary transformation of the bound spectrum. Let us, however, stress that possible
transformations are restricted by conditions on the addition of bound states.

Let us consider a set of M arbitrary negative energies E (i) (i = 1, . . . ,M). Some of them
may be actual bound-state energies of the initial potential V0. At each of these energies, we
wish to suppress an existing bound state or only modify the potential without removing an
existing state or add a new bound state at an energy not belonging to the bound spectrum. Since
these energies are arbitrary, the order in which they are classified is irrelevant. We construct
a succession of M potentials V2i , phase-equivalent to V0, where some property is modified
at energy E (i). A function ϕ

(i)
0 and a parameter βi as defined in table 2 are also associated

to modification i. With such a chain of potentials, any modification of the bound spectrum
compatible with the restriction on additions can be reached. The behaviour of (3.16) at small
r values easily shows that the parameter βi can modify in a arbitrary way the normalization
constant [1] of the bound state at energy E (i) (if it is not suppressed) without affecting the
normalization constants of the other states. Hence the most general form of phase-equivalent
potentials can be obtained by iterations of transformation (3.15),

V2M = V0 − 2
d2

dr2
ln

M∏
i=1

[
βi +

∫ ∞

r

(
ϕ

(i)
2i−2

)2
dt

]
(3.22)

where ϕ
(i)
2m is the solution of V2m corresponding to ϕ

(i)
0 . This iteration scheme, though

numerically convenient, requires solving the Schrödinger equation at each step. A single
expression depending only on solutions ϕ

(i)
0 of the initial equation can also be derived

[18–20].
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Following [17, 18], an M × M matrix X
(M)
0 is defined with elements

X
(i,j)

0 = βiδij +
∫ ∞

r

ϕ
(i)
0 ϕ

(j)

0 dt (3.23)

for i, j = 1, . . . , M . The final potential V2M is given by [20]

V2M = V0 − 2
d2

dr2
ln det X(M)

0 . (3.24)

This expression is easily proved by iteration [17, 18, 20]. Particular cases discussed in [17, 18]
are unified by this expression. The singularity parameter is modified by twice the difference
between the numbers of removed and added bound states. It may not become negative. A
compact expression is also available for the wavefunction [20]. In [18], the supersymmetric
method is proved to generalize the method of Abraham and Moses [30] based on the traditional
formalism (compare also with [31]).

Among the particular cases of (3.24), let us mention two examples with M = 2. With
two identical energies E (1) = E (2) corresponding to a bound state of V0, one can first remove
this state and then reintroduce it at the same energy. The phase-equivalent potential obtained
with this procedure is identical to the potential obtained with the third case of (3.15). The
final potential contains a free parameter β2. With the same procedure but where energy E (2) is
different from E (1), one can move a bound state to a different energy, also with the introduction
of a parameter.

3.5. Generalizations to other types of potentials

The most general form of phase-equivalent potentials is available in the case of single-channel
scattering with a real energy-independent potential. However, practical calculations may
involve complex optical potentials, energy-dependent potentials or multichannel scattering.
Supersymmetric transformations can be extended in these directions and a number of steps
have already been performed but the same level of generality has not been reached yet.

A first type of generalization concerns complex potentials. Complex optical potentials
are useful to simulate the effect of absorption into inelastic and reaction channels in a single-
channel framework [32]. Phase-equivalent potentials have been derived for the removal of
states in a complex potential [25, 33, 34]. A first difficulty lies in the replacement of the
notion of bound state by the notion of normalizable solution. Complex eigenenergies and the
corresponding normalizable solutions are difficult to obtain for a complex potential. Moreover
solutions corresponding to a positive real part of the energy eigenvalue lead to unphysically
oscillating potentials, when removed. Narrow resonances visible on complex phase shifts
should not be removed even when they correspond to a normalizable solution [25].

Some potentials possess an energy dependence. This case is more complicated and not
very favourable for phase-equivalent supersymmetric transformations. However, the particular
case of a linear energy dependence can easily be treated. The expression for the removal of a
bound state can be found in [35].

The generalization to multichannel scattering is an interesting but difficult problem. It
requires passing to a matrix formalism [36]. However, several new difficulties appear. At
some time, it was believed that phase-equivalent potentials could not be constructed with the
supersymmetric formalism [28]. However such a construction was realized in [37] for the
removal case (see also [38]). Preliminary results in the same direction were obtained in [39].
The addition of bound states can also be treated [40].

A first difficulty of the multichannel phase equivalence arises from the large number of
behaviours at 0 and ∞ that multichannel solutions may have. A second related difficulty is
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that degenerate bound states exist for multichannel potentials and generally appear when a
bound state is added [40].

Let us briefly describe the removal case for a Schrödinger equation describing N coupled
channels, (

− d2

dr2
+ V0(r)

)
�0(r) = E�0(r) (3.25)

where all masses are supposed equal for simplicity. The potential V0 is an N × N Hermitian
matrix and �0 is a column eigenvector. The asymptotic limit of the potential,

V0(r) →
r→∞	 (3.26)

is a diagonal matrix whose diagonal elements 	ii are the thresholds of the different channels.
Let 


(0)
0 be a normalized eigenvector at the physical energy E0,∫ ∞

0



(0)†
0 (r)


(0)
0 (r) dr = 1

where 

(0)†
0 is the adjoint row vector of 


(0)
0 . A phase-equivalent potential matrix with energy

E0 removed reads

V2(r) = V0(r) − 2
d

dr



(0)
0 (r)


(0)†
0 (r)∫ r

0 

(0)†
0 (t)


(0)
0 (t) dt

. (3.27)

This potential provides the same N × N scattering matrix as V0. The corresponding
eigenvectors are given in [37].

4. Applications of phase equivalence

4.1. Solvable potentials

The general technique described in the previous section can be applied to derive analytical
expressions of phase-equivalent potentials in the case of solvable potentials.

The first case studied was the attractive Coulomb potential. Amado [41] derived potentials
for each partial wave providing the Coulomb phase shifts but without the lowest bound state.
Further potentials phase equivalent to Coulomb were constructed analytically and studied in
[17, 42, 43].

Solvable potentials phase equivalent to the Morse and Hulthén potentials have also been
obtained [23, 44]. The Pöschl–Teller and generalized Pöschl–Teller potentials are considered
in [45, 46]. The Eckart potential is discussed in [47]. Closed algebraic expressions have
also been obtained for potentials that are phase equivalent with the generalized Ginocchio
potential, which is a member of the Natanzon class [48].

4.2. Deep and shallow potentials

In nuclear physics, the deep or shallow nature of the nucleus–nucleus interaction has been
a long-standing problem. Microscopic models favour deep potentials to simulate the effect
of the Pauli principle between the interacting nuclei. Deep potentials possess bound states
below the physical spectrum that simulate states forbidden by the Pauli exclusion principle
between the nucleons constituting these nuclei.

Elastic scattering data do provide both deep and shallow potentials. For instance, α + α

scattering can be described equally well with a shallow potential exhibiting a complicated
orbital-momentum dependence [49] and by a simple deep potential without such a dependence
[50]. Only even partial waves are relevant for two identical bosons. The deep potential
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Figure 1. Deep α + α potential [50] for the s wave (V0) and its successive supersymmetric partners
(V1, . . . , V4). Phase-equivalent potentials are represented as full lines. The potential of Ali and
Bodmer [49] (dotted line) is shown for comparison.

possesses three unphysical bound states (two in the s wave and one in the d wave) which
simulate Pauli-forbidden states of microscopic descriptions of this collision (i.e. states of
the relative motion that correspond to vanishing solutions). Supersymmetric transformations
helped to clarify the problem [15].

Figure 1 shows the effect of removing the two forbidden states in the s wave of the deep α +
α potential of Buck et al [50]. Potential V4 is similar to the shallow phenomenological potential
of Ali and Bodmer [49]. The shallow potential displays a strong repulsive core qualitatively
similar to the singularity of V4. This resemblance indicates that the deep empirical potential
V0 of Buck et al and the shallow empirical potential of Ali and Bodmer are approximately
phase equivalent. They cannot be exactly phase equivalent since the different numbers of
bound states of these non-singular potentials lead to different Levinson theorems (3.17).
Potentials V2 and V4 are phase equivalent to V0 and have respectively one and two bound
states less. The intermediate potentials V1 and V3 have the same number of bound states as
V2 and V4 but are not phase equivalent to V0. Each transformation increases the r−2 repulsive
singularity at the origin [15]. With equation (3.15) or (3.24), one can obtain V2 and V4 in a
simple and direct way and avoid calculating V1 and V3.

Phase-equivalent supersymmetric transformations have been applied to different systems
such as d + n [51], α + n [27, 52], α + α [15, 16, 53], α + 14C [54], α + 16O [33, 35] (see [26]
for a very close approximate treatment) and 16O + 16O [25].

For the 16O + 16O elastic scattering, deep and shallow complex optical potentials provide
essentially similar fits of experimental excitation functions over the 10 to 35 MeV range of
centre-of-mass energies. After removing complex normalizable solutions from a deep optical
potential, the real and imaginary parts of the resulting potentials for the l = 12 to 20 dominant
partial waves resemble the shallow-potential ones [25].

Finally, phase-equivalent transformations have also been used to derive local potentials
from resonating-group calculations [55, 56].

4.3. Off-shell effects in reactions

The role of off-shell effects is studied in a number of types of reactions [57]. Usually, these
effects are found rather weak with two exceptions that we discuss first.



10236 D Baye and J-M Sparenberg

Figure 2. α(α, αγ )α experimental cross sections (circles), compared with microscopic (dashed
line), deep-potential (DP, full line) and shallow-potential (SP, dotted line) calculations [58].
Experimental data are from [61].

A charged particle accelerated by a Coulomb force emits radiation. This photon-emission
process known as bremsstrahlung can also occur in a collision between nuclei because of the
acceleration due to the combined effect of the strong nuclear and Coulomb forces. Nucleus–
nucleus bremsstrahlung corresponds to a transition between continuum states, the relative
motion of the colliding nuclei being slowed down by the emission of the photon. Model
calculations involve an electromagnetic transition between initial and final scattering waves
with different energies. The α + α bremsstrahlung is dominated by E2 transitions. It has been
studied with the resonating-group microscopic model [58, 59] and with the potential model
[60] with both the deep potential of [50] and its phase-equivalent shallow potential. For the
s waves, they are displayed as V0 and V4 in figure 1. For the d waves, only one forbidden state
is removed from the deep potential, while for larger l values there is no forbidden bound state
[15, 50].

In the available experimental data [61], the α particles have an initial centre-of-mass
energy Ei below 10 MeV (see figure 2). After the collision, they are detected in the coplanar
directions θ1 = θ2 = 35◦ while the emitted photon remains undetected. All theoretical
calculations reproduce the data reasonably well. However, the shallow-potential cross section
is smaller beyond 13 MeV than the deep-potential one by a factor of 2. Below 13 MeV,
the microscopic calculation (dashed line) agrees fairly well with the deep-potential result.
Additional data with improved statistics would allow discriminating between the models
[58, 59, 62].

In the same spirit, proton–proton bremsstrahlung might be useful to discriminate deep
and shallow nucleon–nucleon potentials [63].

Significant off-shell effects are also found in the photodisintegration of 7Li into α and 3H
[64]. Here also the results obtained with a deep potential agree better with experiment than
those obtained with a shallow potential.

Off-shell effects are weak in a number of other reactions. In the 16O + 17O collision
studied with the coupled-reaction-channel model [65], a measurable difference between phase-
equivalent potentials only appears at scattering angles around 90◦. Unfortunately, data are not
available in the interesting energy domain. In breakup reactions [45, 66, 67], these effects are
essentially negligible.
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Table 3. Ground-state 12C energy and root-mean-square radius in a 3α model. The phase-
equivalent potentials V0 and V4 are taken as Vαα . For V0, a projection technique [70] is used to
eliminate the two-body forbidden states.

12C Vαα = V0 Vαα = V4 Experiment

E (MeV) −0.26 −1.01 −7.29√
〈r2〉 (fm) 2.80 2.80 2.48

λ 1.096 1.088
E (MeV) −7.29 −7.29 −7.29√

〈r2〉 (fm) 2.35 2.46 2.48

4.4. Off-shell effects in bound three-body systems

In reaction studies, deep local potentials often provide better results than shallow potentials.
However, for the study of bound states they have an enormous drawback. The non-physical
states of the two-body interactions give rise to numerous unphysical states in many-body
systems [68]. It is difficult to extract meaningful results from their spectra. Calculations
with shallow phase-equivalent potentials avoid this problem [68] and prevent the collapse of
three-body systems [69]. Shallow phase-equivalent potentials are easier to use except that the
employed numerical technique must be able to deal with an l dependence of the potential.

The deep-potential problem is usually solved by a projection technique which does not
affect the nucleus–nucleus potential, but introduces nonlocality in the three-body Hamiltonian
[70]. Unphysical two-body bound states are moved to sufficiently high energies so that they
do not affect much the three-body spectrum. In such calculations, very accurate numerical
conditions are required [71, 72]. The results of this approach can be compared with the
supersymmetric elimination of the unphysical bound states [52, 72].

Let us illustrate this with a three-α model of 12C [71, 72]. Its Hamiltonian reads

H = − h̄2

2mα

(	1 + 	2 + 	3) + λ[Vαα(r23) + Vαα(r31) + Vαα(r12)] (4.1)

where ri is the coordinate of α particle i and rij = ri − rj is the relative coordinate between
α particles i and j . Different choices are made for the interaction potentials Vαα between α

particles. The parameter λ is equal to unity for the bare αα interaction. The results for λ = 1
are shown in the first two rows of table 3. Without the projection technique, the energy would
be −240.65 MeV. As can be seen from the table, the deep potential V0 with elimination of the
two-body forbidden states and the phase-equivalent shallow potential V4 lead to qualitatively
similar results. The off-shell effects lead to an energy difference of 0.75 MeV. Since the results
are quite far from experiment, this is a poor model for 12C. The validity of the model can
also be tested by adjusting λ to fit the experimental ground-state energy (see table 3). The
two models still provide different results as shown by the root-mean-square radii. Contrasted
densities can be seen in figure 7 of [72]. Note that with the λ values needed to reproduce the
12C ground-state energy, the 2α system 8Be would be bound!

The α + n + p system has been used to determine the α + d scattering length [73] and to
study the 6Li nucleus [74]. Phase-equivalent potentials do not lead to very different results.
Similar studies were performed on the three-nucleon [75] and α + α + N systems [76].

Light nuclei with a neutron excess and a small binding energy possess much larger radii
than stable nuclei. The neutron density distribution displays an extended shape known as a
halo. A halo nucleus is viewed as made of a core resembling a normal nucleus surrounded by
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Figure 3. Diagonal and non-diagonal components (1: 3S, 2: 3D) of the Moscow nucleon–nucleon
potential [84] (dotted lines) and of the phase-equivalent shallow potential [37] (full lines) after
removal of the forbidden bound state (FBS).

one or two loosely bound neutrons. Two-neutron halo nuclei such as 6He, 11Li and 14Be are
well described by a three-body model involving core-neutron and neutron–neutron interactions
[77]. Occupied neutron orbitals of the core are forbidden to the halo neutrons in the deep
core-neutron potential. Halo nuclei are studied in [52, 72, 77–81]. Phase equivalence has
been analysed in studies of 6He [52, 72, 78–80], 11Li [52, 81] and 14Be [52].

In [52], approximate variational calculations are performed with the Lagrange-mesh
method for these halo nuclei. A deep core-neutron potential and its shallow phase-equivalent
potential lead to only slightly different binding energies. The larger binding energy obtained
with the shallow potential induces a smaller radius. However, when the theoretical binding
energies are fitted to the experimental value by multiplying the potentials by a constant like in
(4.1), the radii become essentially the same. In the case of 14Be, the wavefunctions obtained
with the deep and shallow potentials are, however, significantly different (see figure 2 in [52]).

Phase equivalence has also been discussed in an 16O + α + n model of 21Ne [82] and in a
study of the pionic decay of the 5

�He hypernucleus [83].

4.5. Phase-equivalent coupled-channel potentials

The simplest case of coupled channels is provided by the deuteron where the 3S1–3D1

coupling is due to the tensor force. The deep neutron–proton Moscow potential [84]
contains an unphysical bound state which can be exactly removed by a pair of supersymmetric
transformations [39, 37]. This removal was first studied in an approximate way in [85].

The Moscow potential and its phase-equivalent potential are displayed in figure 3 [37].
The D component of the potential is not affected much by the transformation. In contrast,
the S component becomes much more similar to traditional nucleon–nucleon potentials based
on meson exchange except that it presents a 2r−2 singularity near the origin. The coupling
potential is also modified. Note that the wavefunctions of both potentials are quite different
at small distances. The S component has a node in the deep-potential case whose existence
might be addressed experimentally.
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5. Inverse scattering

5.1. Supersymmetric transformations with complex factorization energies

As discussed in the introduction, the possible existence of bound states makes solutions
of the inverse problem non-unique. A unique potential is obtained when there is no
bound state but, in traditional inversion theory, this can only happen when the phase shift
for orbital momentum l takes equal values at zero and infinite energies. Otherwise the
behaviour of the phase shift reveals bound states through the Levinson theorem (3.17). Before
describing inversion techniques, let us consider supersymmetric transformations with complex
factorization energies and study the transformations of Jost functions and S matrices [21].

For a complex factorization energy

E = κ2 �= 0, (5.1)

a solution ϕ0(κ, r) of the Schrödinger equation behaves asymptotically as

ϕ0(κ, r) →
r→∞ exp

[
−iκr +

i

2
Z1Z2κ

−1 ln(2iκr)
]

+ O(r−1). (5.2)

Since we are interested in a potential without bound states, we now focus on transformations
described in the last two rows of table 1. These transformations which leave the spectrum
unchanged have opposite behaviours both at the origin and at infinity. For a solution regular
at the origin, κ is chosen to lie in the upper half k plane in order to ensure the appropriate
increasing asymptotic behaviour,

ϕ0(κ, r) →
r→0

rn0+1 ⇒ Im κ > 0. (5.3)

For a solution irregular at the origin, κ is chosen to lie in the lower half k plane in order to
ensure a decreasing asymptotic behaviour,

ϕ0(κ, r) →
r→0

r−n0 ⇒ Im κ < 0. (5.4)

Let us recall that n0 must be larger than 0 in this case to ensure a transformation of a scattering
state into another scattering state and to keep a simple relation between the phase shifts.

With the first-order differential operators (2.11), the potential after a supersymmetric
transformation reads according to (2.14)

V1 = V0 − 2
d

dr

ϕ′
0

ϕ0
. (5.5)

Equations (5.2) to (5.5) imply that the transformed potential behaves near the origin as (2.16)
with n1 given in table 1 and asymptotically as (2.15),

V1(r) →
r→∞Z1Z2r

−1 + [l(l + 1) + iZ1Z2κ
−1]r−2 + O(r−3). (5.6)

When no Coulomb term is present, the difference between V1 and V0 decreases exponentially
at infinity. The r−2 term is then the same in the asymptotic forms of both the initial and final
potentials.

Equation (2.17) provides a relation between the scattering states of V0 and V1. The regular
solution u0 [1, 2] is defined with the normalization

u0(r) →
r→0

(kr)n0+1

(2n0 + 1)!!
+ O(rn0+2). (5.7)

Its asymptotic behaviour

u0(r) →
r→∞

1

2i

[
F0(k) e−i(kr− 1

2 n0π) − F0(−k) ei(kr− 1
2 n0π)

]
(5.8)
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Table 4. Modifications of the phase shift, singularity parameter and Jost function for
supersymmetric transformations with a complex energy E = κ2 �= 0.

limr→0 ϕ0 Im κ δ1(k) − δ0(k) n1 F1(k)/F0(k)

rn0+1 >0 arctan(k/iκ) n0 + 1 k/(k + κ)

r−n0 <0 arctan(k/iκ) n0 − 1 (k − κ)/k

defines the Jost function F0. The transformed function A−
0 u0 is proportional to a regular

solution u1 of H1, satisfying (5.7) with n0 replaced by n1. The asymptotic behaviour of u1

verifies an equation similar to (5.8) which provides the Jost functions

F1(k) = F0(k)
k

k + κ
(5.9)

for ϕ0 →
r→0

rn0+1 and

F1(k) = F0(k)
k − κ

k
(5.10)

for ϕ0 →
r→0

r−n0 . The scattering matrix (3.20) becomes in all cases

S1(k) = S0(k)
κ + k

κ − k
. (5.11)

This equation relates the phase shifts of V0 and V1 by

δ1(k) = δ0(k) + arctan(k/iκ). (5.12)

The transformed phase shift is in general complex.
A supersymmetric transformation thus introduces an S-matrix pole at κ . The main

characteristics of transformations are summarized in table 4. One can verify that the phase-
shift modification is in agreement with the generalized Levinson theorem (3.18) and with the
modification of singularity (2.16) at the origin.

5.2. Derivation of the unique singular potential without bound state at fixed l

The results of section 5.1 suggest the following approach to the inverse problem: from a phase
shift at fixed l, one determines a singular potential without any bound state. The singularity
parameter of the repulsive core of this potential is, according to (3.18) with N = 0,

n = l +
2

π
[δ(0) − δ(∞)]. (5.13)

The singularity parameters of different partial waves are not necessarily equal.
Because of the lack of bound state, this potential is unique. The inverse problem can

thus be solved in two steps: (i) determine the unique singular potential, which only depends
on scattering data, (ii) add chosen bound states with chosen normalization constants to the
spectrum without modifying the phase shifts. Two parameters are thus introduced at each
such step.

The second step is explained in section 3.4. The first step can be performed in an
approximate way by using a Bargmann-type approximation of the S matrix,

SM(k) = S0(k)

M∏
m=1

κm + k

κm − k
. (5.14)
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This expression is however not purely Bargmann because of factor S0 which is the S matrix of
a reference potential V0. For a real potential, the S matrix has to be unitary. This is the case if
and only if the poles are symmetric with respect to the imaginary k-axis. The corresponding
phase shift is given by

δM(k) = δ0(k) +
M∑

m=1

arctan(k/iκm). (5.15)

The parameters of any of these expressions are obtained with a fit to given data.
Starting from V0, the first factor involving κ1 in the product leads to a potential V1 by

using (5.5). This process is iterated. The factor with κ2 gives a new potential V2, and so on.
For each factorization energy Em = κ2

m, ϕm−1(κm, r) is the chosen factorization
eigensolution of Hm−1 and ϕ0(κm, r) is the same-type eigensolution of the initial Hamiltonian
H0. The final potential reads, by repeated application of (5.5),

VM(r) = V0(r) − 2
d

dr

M∑
m=1

ϕ′
m−1(κm, r)

ϕm−1(κm, r)
. (5.16)

It can be expressed in terms of solutions from the initial equation [86–88] as

VM(r) = V0(r) − 2
d

dr

W ′ [ϕ0(κ1, r), . . . , ϕ0(κM, r)]

W [ϕ0(κ1, r), . . . , ϕ0(κM, r)]
(5.17)

where W is the Wronskian of the different solutions and W ′ is its derivative with respect to r.
The solutions of the corresponding Schrödinger equation read

ϕM(k, r) = W [ϕ0(k, r), ϕ0(κ1, r), . . . , ϕ0(κM, r)]

W [ϕ0(κ1, r), . . . , ϕ0(κM, r)]
. (5.18)

Formulae involving determinants of integral forms of 2 × 2 Wronskians can reduce the sizes
of determinants by about a factor of two [89].

The asymptotic difference between the potentials is, by repeated application of (5.6),

VM(r) − V0(r) →
r→∞iZ1Z2

M∑
m=1

κ−1
m r−2 + O(r−3). (5.19)

Since the poles are symmetric with respect to the imaginary k-axis, the first term appearing on
the right-hand side of this equation is purely real. As we are interested in potentials decreasing
faster than r−2 at infinity, this term should vanish. This imposes a condition on the κm. Of
course, this term disappears when the potential contains no Coulomb term. Moreover, when
the initial potential is short-ranged, i.e. decreasing exponentially at infinity, the transformed
potentials are also decreasing exponentially. Consequently, the last term of (5.19) decreases
exponentially rather than as r−3, and the initial and final potentials are both short-ranged.

An inversion algorithm thus reads as follows. First a potential V0 is selected which
provides the initial scattering matrix S0 or phase shift δ0. For example, the choice
V0 = l(l + 1)/r2 is convenient when Z1Z2 = 0 but does not lead to a fast convergence
when Z1Z2 �= 0. Secondly, the S matrix is fitted with an expression SM(k) [(5.14)] or the
phase shift is fitted with an expression δM(k) [(5.15)]. These fits provide values of M and of
the complex parameters κm. Let M+ be the number of poles with Im κm > 0 and M− be the
number of poles with Im κm < 0. The phase shift verifies

δ(0) − δ(∞) = 1
2 (M+ − M−)π. (5.20)
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With (5.13) and the condition n � 0, this leads to the condition

M+ � M− + l. (5.21)

Thirdly, the potential VM is determined with (5.16) or (5.17). Finally, up to

N = 1
2 (M+ − M− + l) (5.22)

bound states can be added if this presents a physical interest.
In principle this technique should be generalizable to multichannel inversion. However,

a number of open problems still remain. A typical difficulty arises from the fact that if one
starts from an uncoupled initial potential, the transformed potentials are also uncoupled. For
example the simple Cox potential [90] could not until now be derived through supersymmetric
inversion.

5.3. Inversion at fixed l with real factorization energies

Recently, Samsonov and Stancu [91] have proposed a variant of the supersymmetric approach
to the inversion problem. The main differences are: (i) they use real energies only and (ii)
they perform the two steps in a single formalism. In addition, they fit their parameters on
the phase shifts (5.15) rather than on the S matrix (5.14) as in [21]. The advantage of real
over complex energies might be an elimination of weak oscillations in the asymptotic part of
the potential. However, complex energies are needed for describing resonances and might be
required to approximate effective range expansions in the Coulomb case.

In order to compare both techniques, let us first write the Jost function corresponding to
the inversion technique described in section 5.2 as

FM(k) = F0(k)

M+∏
m=1

k

k + κ+
m

M∏
m=M++1

k − κ−
m

k
(5.23)

where we now assume that the first M+ poles κ+
m are located in the upper half k plane and the

remaining M− poles κ−
m are in the lower half k plane. The Jost function F0 corresponds to the

reference potential V0. In [91], the Jost function is parametrized in a different way as

FM(k) = F0(k)

Mb∏
m=1

k

k + ibm

M∏
m=Mb+1

k − iam

k
(5.24)

where the Ma coefficients am are real and not necessarily positive and the Mb coefficients
bm (Mb > Ma) are positive. The imaginary poles −ibm of the Jost function are not related to
bound states nor to virtual states.

When all am are negative, they correspond to virtual states only. Then (5.24) is a particular
case of (5.23) and the two methods lead to exactly the same potential. The coefficients κ−

m

and κ+
m particularize to iam and ibm, respectively. However, Samsonov and Stancu also use

positive values for am. They interpret an imaginary pole of the S matrix in the upper k plane
either as a pole or as a zero of the Jost function. The latter values corresponding to bound
states, solutions of the second row of table 1 (addition of a bound state), can then be used,
which contain a parameter. The two steps of the previous paragraph are combined in a single
one. The bound-state locations are however imposed by the fit (5.24). They may eventually
be modified with the techniques of section 3.4.

In [92], the same authors propose to use zero-energy solutions in order to modify the
asymptotic behaviour (2.3) of the initial potential. Indeed, in the absence of Coulomb term
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(Z1Z2 = 0), the asymptotic behaviour (5.2) is replaced by

ϕ0(0, r) →
r→∞

{
rl+1 + O(rl)

r−l + O(r−l−1).
(5.25)

The asymptotic behaviour of the transformed potential then becomes

V1(r) →
r→∞V0(r) +

{
2(l + 1)r−2 + O(r−3)

−2lr−2 + O(r−3)
(5.26)

depending on the choice for ϕ0(0, r). This allows obtaining the correct asymptotic behaviour
of an l �= 0 potential starting for example from V0 = 0 but it is only valid in the absence of
Coulomb interaction.

The parameter appearing in a zero-energy solution which is singular at both zero and
infinity can be adjusted to obtain a correct effective-range expansion [92].

5.4. Inversion at fixed energy

The problem of the inversion at a fixed energy is quite different. The data are a countable set
of phase shifts for all partial waves at this energy. Only a limited number of these phase shifts
are significantly different from zero. This problem has first been solved by Newton [93]. A
supersymmetric approach is also possible.

The Schrödinger equation (2.1) at a given positive energy E = k2 is written as[
−r

d2

dr2
r + r2(V0 − E)

]
χ0 = −l(l + 1)χ0 (5.27)

after posing ψ0 = rχ0. Unlike in previous sections, we separate the centrifugal term from V0.
We consider a particular solution ϕ0(l0, r) corresponding to a complex eigenvalue l0(l0 + 1),
with the convention Re l0 � − 1

2 . Equation (5.27) can be rewritten in factorized form as[
A+

0A
−
0 − l0(l0 + 1)

]
χ0 = −l(l + 1)χ0 (5.28)

where l0(l0 +1) plays the role of a factorization constant. The operators A+
0 and A−

0 are defined
as

A+
0 =

(
d

dr
+

ϕ′
0

ϕ0

)
r (5.29)

and

A−
0 = r

(
− d

dr
+

ϕ′
0

ϕ0

)
. (5.30)

With the standard permutation one obtains a new equation with the potential

V1 = V0 − 2

r

d

dr
r
ϕ′

0

ϕ0
. (5.31)

The potential will present singularities if ϕ0 is allowed to vanish. Hence we focus on purely
ingoing and outgoing solutions with asymptotic behaviour

ϕ0(l0, r) →
r→∞r−1

[
1 ∓ l0(l0 + 1) + η2 ∓ iη

2ikr

]
exp[±i(kr − η ln 2kr)] (5.32)

with η = Z1Z2/2k.
As before, the eigenfunction of V1 with the eigenvalue l(l + 1) is given by

χ1 = A−
0 χ0. (5.33)
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Figure 4. Zeros (dots) and poles (circles) of the Jost function from a fit of 1S0 np phase shifts [21].

From its asymptotic expression, one obtains the transformed S matrix

S1(l) = S0(l)[l(l + 1) − l0(l0 + 1)] (5.34)

when ϕ0 is purely outgoing or as

S1(l) = S0(l)[l(l + 1) − l0(l0 + 1)]−1 (5.35)

when ϕ0 is purely ingoing. The potential V1 is, however, complex with an unphysical
asymptotic behaviour.

To obtain a real potential, one has to consider pairs of transformations. A first
transformation is performed with an outgoing solution corresponding to index l0. A second
transformation is then performed with an ingoing solution corresponding to the conjugate
index l∗0 . The resulting transformation of the S matrix is given by

S2(l) = S0(l)
l(l + 1) − l0(l0 + 1)

l(l + 1) − l∗0 (l∗0 + 1)
. (5.36)

Unitarity of S0 implies unitarity of S2.
Equation (5.36) can be iterated M times. The resulting parametrization of the S matrix

can be used to determine M parameters l2m−2. This provides the basis for an inversion scheme
of the same type as the method based on (5.14). This inversion method is equivalent to the
simplest method introduced by Lipperheide and Fiedeldey [94, 95].

Schnizer and Leeb [96, 97] have constructed a general formalism unifying fixed-orbital-
momentum and fixed-energy problems, based on generalized Darboux transformations.

6. Applications of supersymmetric inversion

6.1. Nucleon–nucleon scattering

A first example is the inversion of the 1S0 nucleon–nucleon phase shift [21]. A good fit of
experimental np phase shifts can be obtained with only five S-matrix poles. These poles
are located as shown in figure 4. Three poles in the upper k plane (M+ = 3) lead to three
transformations of type (5.3). These are poles of the Jost function and as such non-physical:
the pole on the imaginary axis does not correspond to a bound state. Two poles in the lower
k plane (M− = 2) lead to two transformations of type (5.4). They correspond to zeros of the
Jost function, namely here virtual states. The singularity parameter is n = 1. The fact that
n is odd leads to an unexpected 2r−2 singularity. The difference δ(0) − δ(∞) then takes the
unusual value 1

2π . The potential is shown as ‘np’ in figure 5. The curve labelled ‘np reg’
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Figure 5. Potentials for 1S0 nucleon–nucleon scattering: singular proton–proton (pp) and neutron–
proton (np) potentials of [21] and regular potential of [98] (np reg).

corresponds to the regular potential of [98] with M+ = M− = 3 but with a pole at −71i whose
role is only to regularize the potential and to ensure consistency with the standard Levinson
theorem (3.17). Its precise location is not important as long as it is far below the real k-axis.
A similar inversion of experimental pp phase shifts is obtained with seven poles, i.e. M+ = 4
and M− = 3 (n = 1). The potential is shown as ‘pp’ in figure 5.

Samsonov and Stancu fit 1S0 experimental np phase shifts with six S-matrix poles on
the imaginary axis in (5.24) (Ma = Mb = 3) [91]. They simultaneously reproduce the
effective range expansion. Their potential does not present a second shallow minimum like
the np potential in figure 5 and is very close to experimental soft-core potentials. Four poles
being on the upper imaginary k-axis, the singularity parameter is n = 2 which corresponds
to δ(0) − δ(∞) = π and one of the poles can be transformed into a deeply bound state. The
same authors fit the 1P1 and 1D2 np phase shifts with six and four poles, respectively [92].
They use parameters in zero-energy solutions to obtain correct effective-range expansions in
both partial waves.

6.2. Searches for l-independent potentials

For a given partial wave, the supersymmetric inversion method described above leads to the
complete family of potentials reproducing the experimental phase shifts. A number of bound
states (with a maximum given by (5.22)) can be added to the singular inversion potential, with
arbitrary energies and normalization constants. When the system possesses physical bound
states, the potential can thus be made to reproduce the experimental spectrum [100].

As discussed in section 4.2, the simplest potentials describing the interaction between
composite particles are often deep and l independent. When such a potential exists, i.e. when
experimental phase shifts are compatible with an l-independent potential, this potential can be
constructed with the inversion technique presented above. For a given partial wave, an
inversion potential with physical bound states is first constructed. Then, like physical bound
states, forbidden states are added to this inversion potential without modifying the phase
shifts. In contrast to physical bound states, their energies and normalization constants cannot
be related to experimental data. However, these energies and normalization constants can be
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considered as free parameters that can be varied in order to fit phase shifts of partial waves
different from the inverted one. This procedure assumes that the central potential is the same
for all partial waves. If such a fit is possible, this assumption is found to be valid and the
required potential is obtained. If such a fit is not possible, it proves that the experimental phase
shifts are not compatible with an l-independent potential since the inversion technique gives
access to the complete family of potentials reproducing the phase shifts of the inverted partial
wave.

This procedure has been applied to various systems in a simplified form: a potential
without bound state is constructed by supersymmetric inversion, physical states are
added with phase-equivalent supersymmetric pairs and Pauli forbidden states are added
phenomenologically by regularizing the obtained potential at short distances with an attractive
parabolic core. This last step simplifies the parameter search and suppresses numerical
instabilities in the short-distance behaviour of the potential constructed by supersymmetric
transformations. In [22], this method has been used for the α + α system, for which a deep
l-independent potential very close to that of [50] has been constructed from the scattering
phase shifts. It has also led to new l-independent potentials for the scattering of electrons on
noble-gas atoms [22]. With the same technique, an important simplification of the neutron–
proton interaction (no parity and spin dependence) is obtained [99], as compared with the deep
Moscow potential [84]. This simplification is only possible for a deep potential, in contrast
with usual shallow nucleon–nucleon interactions.

Recently, this technique has for instance been applied to construct 12C + α potentials that
reproduce both the experimental elastic-scattering phase shifts and some bound states in the
16O spectrum [100]. The 12C + α system is described by a new l-independent potential which
also reproduces the physical properties of the whole rotational band built on the 0+

2 excited
state. This has led to a prediction for the normalization constant of the 2+

1 subthreshold state
in the 16O spectrum which has a strong impact on the 12C(α,γ )16O capture cross section in
nuclear astrophysics.

7. Conclusion and outlook

Supersymmetric quantum mechanics has brought a fresh look at the inverse problem. The
introduction of singular potentials in the theory has opened a way to new applications.
Moreover supersymmetric transformations often provide a strong simplification with respect
to the traditional approach.

In the particular phase-equivalence problem, pairs of supersymmetric transformations
allow the construction of exactly phase-equivalent potentials with arbitrarily different bound
spectra (subjected to an unavoidable condition on the maximum number of bound states that
can be added). This technique has been extended from real potentials to complex, linearly
energy-dependent and multichannel potentials.

The ambiguity between deep and shallow potentials can be resolved in an intuitive way.
This approach has given rise to many studies on the physical influence of the non-physical
bound states appearing in inversion techniques. In many cases, this influence is rather weak
but some reactions such as bremsstrahlung should allow physically discriminating between
deep and shallow potentials.

The genuine inverse problem, i.e. deriving a potential from scattering data can be solved
in a simple approximate way with supersymmetry. The construction of a unique singular
potential without any bound state opens a way to variants of the traditional approach. By
adding bound states, one can for example search for l-independent potentials.
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Several problems remain open. The most difficult one is the inverse coupled-channel
scattering. It is even more difficult in the presence of thresholds.
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Appendix. Inversion with the Marchenko equation

The standard approach to the inverse scattering problem at fixed l is based on the Gel’fand–
Levitan or Marchenko equations [1–3]. Here we briefly summarize the Marchenko approach
which is based on the scattering matrix and is therefore closer to the supersymmetric technique
described in section 5. The method with the Gel’fand–Levitan equation is based on the
knowledge of the Jost function.

From the scattering matrix Sl(k) = exp[2iδl(k)] in the absence of bound states, one
calculates [1, 98, 101]

Fl(r, t) = −(2π)−1
∫ ∞

−∞
hl(kr)[Sl(k) − 1]hl(kt) dk (A.1)

where hl is a Riccati–Hankel function. For example h0(kr) = exp(ikr). The Marchenko
equation reads

Al(r, t) + Fl(r, t) +
∫ ∞

r

Al(r, s)Fl(s, t) ds = 0. (A.2)

After calculation of the kernel Al(r, t), the potential is given by

Vl(r) = −2
d

dr
Al(r, r). (A.3)

When the S matrix is approximated by the rational expression (5.14) but with S0 = 1,
the integral in (A.1) can be performed algebraically. This case is then equivalent to the
supersymmetric inversion of section 5.2 [34].

References

[1] Chadan K and Sabatier P C 1977 Inverse Problems in Quantum Scattering Theory (New York: Springer)
[2] Newton R G 1982 Scattering Theory of Waves and Particles 2nd edn (New York: Springer)
[3] Faddeev L D 1963 J. Math. Phys. 4 72 (1959 Usp. Mat. Nauk. 14 57)
[4] Cooper S G, Kukulin V I, Mackintosh R S and Kuznetsova E V 1998 Phys. Rev. C 58 R31

Cooper S G, Kukulin V I, Mackintosh R S and Pomerantsev V N 2000 Nucl. Phys. A 677 187
[5] Bargmann V 1949 Phys. Rev. 75 301
[6] Bargmann V 1949 Rev. Mod. Phys. 21 488
[7] Jost R and Kohn W 1952 Phys. Rev. 88 382
[8] von Geramb H V (ed) 1994 Quantum Inversion Theory and Applications (Lecture Notes in Physics vol 427)

(Berlin: Springer)
[9] Apagyi B, Endrédi G and Lévay P (ed) 1997 Inverse and Algebraic Quantum Scattering Theory (Lecture Notes

in Physics vol 488) (Berlin: Springer)
[10] Sukumar C V 1985 J. Phys. A: Math. Gen. 18 2917
[11] Sukumar C V 1985 J. Phys. A: Math. Gen. 18 2937
[12] Junker G 1996 Supersymmetric Methods in Quantum and Statistical Physics (Berlin: Springer)
[13] Cooper F, Khare A and Sukhatme U 2001 Supersymmetry in Quantum Mechanics (Singapore: World Scientific)
[14] Bagchi B 2001 Supersymmetry in Quantum and Classical Mechanics (Boca Raton, FL: Chapman and

Hall/CRC)



10248 D Baye and J-M Sparenberg

[15] Baye D 1987 Phys. Rev. Lett. 58 2738
[16] Baye D 1987 J. Phys. A: Math. Gen. 20 5529
[17] Ancarani L U and Baye D 1992 Phys. Rev. A 46 206
[18] Baye D 1993 Phys. Rev. A 48 2040
[19] Baye D 1994 QuantumInversionTheoryandApplications(Lecture Notes in Physics vol 427) ed H V von Geramb

(Berlin: Springer) p 127
[20] Baye D and Sparenberg J-M 1994 Phys. Rev. Lett. 73 2789
[21] Sparenberg J-M and Baye D 1997 Phys. Rev. C 55 2175
[22] Sparenberg J-M 2000 Phys. Rev. Lett. 85 2661
[23] Bera P K, Nandi T K and Talukdar B 1993 J. Phys. A: Math. Gen. 26 L1073
[24] Swan P 1963 Nucl. Phys. 46 669
[25] Sparenberg J-M and Baye D 1996 Phys. Rev. C 54 1309
[26] Michel F and Reidemeister G 1985 J. Phys. G: Nucl. Phys. 11 835
[27] Amado R D, Cannata F and Dedonder J P 1990 Phys. Rev. C 41 1289
[28] Amado R D, Cannata F and Dedonder J P 1990 Int. J. Mod. Phys. A 5 3401
[29] Lassaut M, Larsen S Y, Sofianos S A and Rakityansky S A 2001 J. Phys. A: Math. Gen. 34 2007
[30] Abraham P B and Moses H E 1980 Phys. Rev. A 22 1333
[31] Pursey D L and Weber T A 1994 Phys. Rev. A 50 4472
[32] Satchler G R 1990 Introduction to Nuclear Reactions (Houndmills: Macmillan)
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[48] Lévai G, Baye D and Sparenberg J-M 1997 J. Phys. A: Math. Gen. 30 8257
[49] Ali S and Bodmer A R 1966 Nucl. Phys. 80 99
[50] Buck B, Friedrich H and Wheatley C 1977 Nucl. Phys. A 275 246
[51] Sofianos S A, Papastylianos A, Fiedeldey H and Alt E O 1990 Phys. Rev. C 42 R506
[52] Hesse M, Baye D and Sparenberg J-M 1999 Phys. Lett. B 455 1
[53] Sofianos S A, Panda K C and Hodgson P E 1993 J. Phys. G: Nucl. Phys. 19 1929
[54] Michel F and Reidemeister G 1996 Phys. Rev. C 53 3032
[55] Fiedeldey H, Sofianos S A, Papastylianos A, Amos K and Allen L J 1990 Phys. Rev. C 42 411
[56] Howell L L, Sofianos S A, Fiedeldey H and Pantis G 1993 Nucl. Phys. A 556 29
[57] Baye D and Sparenberg J-M 2000 Proc. 7th Int. Conf. on Clustering Aspects of Nuclear Structure and Dynamics

(Rab, Croatia, 1999) ed M Korolija, Z Basrak and R Caplar (Singapore: World Scientific) p 73
[58] Baye D, Descouvemont P and Kruglanski M 1992 Nucl. Phys. A 550 250
[59] Liu Q K K 1992 Nucl. Phys. A 550 263
[60] Baye D, Sauwens C, Descouvemont P and Keller S 1991 Nucl. Phys. A 529 467
[61] Peyer U, Hall J, Müller R, Suter M and Wölfli W 1972 Phys. Lett. B 41 151
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